报告题目:Sylvester rank functions on crossed products
报告人:蒋报捷(Baojie Jiang)博士
报告时间:2019年12月7日 9:00-10:00
报告地点:数学院报告厅B304
报告摘要:见附件。
报告人简介:蒋报捷博士,2014年毕业于南开大学陈省身数学研究所,获理学硕士学位;2018年毕业于复旦大学数学院,获理学博士;现为重庆大学数学与统计学院博士后。研究方向:算子代数、粗几何、Roe代数等方向。
Baojie Jiang, College of Mathematics and Statistics, Chongqing University e-Mail: jiangbaojie@gmail.com
Abstract
Let A be a unital C∗-algebra and let τ be any tracial state on A. Set rkτ(B) = limk→∞τ(|B|1/k) for every B ∈ Matn,m(A). Then rkτ is a Sylvester rank function defined on rectangular matrices over A. Let G be a discrete amenable group which admits a trace preserving action α on (A,τ). Denote by Cc(G,A), the group ring of G with coefficients in A. In this talk, we’ll give two natural Sylvester rank functions on Cc(G,A) and prove that they are equal. This is a joint.
欢迎数学院师生积极参与!